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Abstract

We study the paper The Littlewood–Offord problem
and invertibility of random matrices by Mark
Rudelson and Roman Vershynin in 2008. By
considering different types of vectors, through
applying some inequalities and tools in probability
theory and random matrix theory, we find a tail
probability for smallest singular value, which can be
transformed to the invertibility probability for random
matrices.

Introduction

Random matrices are square or rectangular
matrices with at least some of the entries as random
variables. It is useful in:
• Physics
e.g. Wigner: energy levels for heavy atoms

• Number theory
e.g. zeroes of Riemann zeta function

• Data science/Machine learning
We would like to study invertibility of random
matrices. This can be done by considering the
singular values, the square roots of non-negative
eigenvalues of self-adjoint operator A∗A.
The matrix is invertible if the smallest singular value,
sn(A), is greater than zero.

Facts and assumptions

Global behaviours of singular values are described by
Marchenko-Pastur law.

The largest singular value is described by the Tracy-
Widom law.

The smallest singular value is the infimum of ||Ax||2
for x in the n-sphere. We work with n × n square
matrices A, where entries are:
• independent
• real
• with variances at least 1
• subgaussian

We want to find an upper bound for

P
(
sn(A) ≤ εn−1/2

)
.

So if we put ε = 0, gives invertibility probability bound.

Key steps

Vectors in the (n− 1)-sphere are classified as sparse,
compressible and incompressible vectors.

Sparse Incompressible

We make use of a union bound argument, which
means probability of union of events is at most sum of
probability of individual events.
Since the union bound argument must be applied to
countable events, we apply it to an ε-net of the
sphere, which contains countable vectors with
desirable properties that represent the whole sphere.

||Ax||2 is related to random sums S =
∑n

k=1 akξk, by
considering the coordinates of vector x as coefficients
for random variables in the matrix A. Thus, in fact by
bounding for the norm of Ax we are actually bounding
the random sum S.

Compressible vectors

We start with sparse vectors because many
coordinates of sparse vectors of zeroes. This means
we can ignore many columns in the random matrices,
which allows us to use an ε-net effectively to get the
invertibility for sparse vectors.
Then, we make use of the fact that compressible
vectors are close to sparse vectors to obtain the
probability for sparse vectors.

Outline of steps to obtain tail probability for
compressible vectors

Incompressible vectors

We need to estimate small ball probability, which
is related to the Littlewood-Offord problem.

pε(a) := sup
v∈R

P (|S − v| ≤ ε)

This is a measure of how "spread" S is. We would
like to obtain the small ball probability for general
vectors, which will then be used to establish the
invertibility probability for incompressible vectors.

Outline of steps to obtain small ball probability for
general vectors

Then, we try to consider the distance between an
individual column vector and the span of other
column vectors. If they are close, the smallest
singular value of the matrix will also be small. The
span of other column vectors can be summarised
with the random normal of the span.

Outline of steps to obtain tail probability for
incompressible vectors

Conclusions

Let A be an n× n matrix. Within each row, entries
are real, independent, centered, with variances of at
least 1 and subgaussian moments bounded by B.
All rows are independent and follow the same
distribution. Then, for any ε ≥ 0,

P
(
sn(A) ≤ εn−1/2

)
≤ Cε + cn,

where C > 0 and c ∈ (0, 1) depends only on B.
Thus, if the assumptions are met, the singular
probability for random matrices are exponentially
small.
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